§35. Половое размножение

Вспомните!

Где в организме человека происходит образование половых клеток?

Яйцеклетки – женские половые гаметы образуются в яичниках, парных органах. Сперматозоиды – мужские половые клетки образуются в семенниках, парных органах.

Какой набор хромосом содержат гаметы? Почему?

Гаплоидный набор – это половинный набор хромосом, одинарный (нечетное число), такой набор содержится в половых клетках (гаметах) обозначается n. Например, гаплоидный набор хромосом человека n=23. Так как при оплодотворении двух половых клеток восстанавливается полный диплоидный набор организма – зиготы.

Вопросы для повторения и задания

1. Сравните строение мужских и женских половых клеток. В чём их сходство и отличия?

Яйцеклетки - это относительно крупные неподвижные клетки округлой формы. У некоторых рыб, пресмыкающихся и птиц они содержат большой запас питательных веществ в виде желтка и имеют размеры от 10 мм до 15 см. Яйцеклетки млекопитающих, в том числе и человека, гораздо мельче (0,1-0,3 мм) и желтка практически не содержат. Сперматозоиды - мелкие подвижные клетки, у человека их длина всего около 60 мкм. У разных организмов они отличаются формой и размерами, но, как правило, все сперматозоиды имеют головку, шейку и хвост, обеспечивающий их подвижность. В головке сперматозоида находится ядро, содержащее хромосомы, и акросома - особый пузырёк с ферментами, необходимыми для растворения оболочки яйцеклетки. В шейке сосредоточены митохондрии, которые обеспечивают движущийся сперматозоид энергией их длина всего около 60 мкм.

Яйцеклетка имеет:

Большие размеры

Округлая форма

Наличие большого количества желтка (питательные вещества будущего зародыша)

Наличие яйцевых оболочек

Сперматозоиды имеют:

Небольшие размеры

Разнообразные формы у разных млекопитающих

Орган передвижения (жгутики от 1 до нескольких)

Большое количество митохондрий

Отсутствие рибосом и ЭПС, видоизмененный аппарат Гольджи.

2. От чего зависит размер яйцеклеток? Объясните, почему яйцеклетки млекопитающих - одни из самых мелких.

От запаса питательных веществ. У млекопитающих развитие идет в утробе матери, ее размеры не могут быть большими, так как зародыш развивается в матке, сама матка пронизана кровеносными сосудами, которые так же служат источником питательных веществ и кислорода.

3. Какие периоды выделяют в процессе развития половых клеток?

1 этап – размножение первичных половых клеток

2 этап – рост половых клеток

3 этап – созревание половых клеток

4 этап – формирование половых клеток (только для сперматогенеза), в овогенезе на 4 этапе происходит отмирание полярного тельца ил формирование яйцевых оболочек.

4. Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.

Третья стадия - это мейоз. Мейоз - это особый способ деления клеток, приводящий к уменьшению числа хромосом вдвое и к переходу клетки из диплоидного состояния в гаплоидное. Будущие гаметы на стадии созревания делятся дважды. Клетки, приступающие к мейозу, содержат диплоидный набор уже удвоенных хромосом.

Профаза первого мейотического деления (профаза I) значительно длиннее, чем профаза митоза. В это время удвоенные хромосомы, каждая из которых состоит уже из двух сестринских хроматид, спирализуются и приобретают компактные размеры. Затем гомологичные хромосомы располагаются параллельно друг другу, образуя так называемые биваленты или тетрады, состоящие из двух хромосом (четырёх хроматид). Между гомологичными хромосомами может произойти обмен соответствующими гомологичными участками (кроссинговер), что приведёт к перекомбинации наследственной информации и образованию новых сочетаний отцовских и материнских генов в хромосомах будущих гамет. К концу профазы I ядерная оболочка разрушается.

В метафазе I гомологичные хромосомы попарно в виде бивалентов, или тетрад, располагаются в экваториальной плоскости клетки, и к их центромерам присоединяются нити веретена деления.

В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом - число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом всё ещё состоит из двух сестринских хроматид.

В телофазе I образуются клетки, имеющие гаплоидный набор хромосом и удвоенное количество ДНК. Спустя короткий промежуток времени клетки приступают ко второму мейотическому делению, которое протекает как типичный митоз, но отличается тем, что участвующие в нём клетки гаплоидны.

В профазе II разрушается ядерная оболочка.

В метафазе II хромосомы выстраиваются в экваториальной плоскости клетки, нити веретена деления соединяются с центромерами хромосом.

В анафазе II центромеры, соединяющие сестринские хроматиды, делятся, хроматиды становятся самостоятельными дочерними хромосомами и расходятся к разным полюсам клетки.

Телофаза II завершает второе деление мейоза.

При сперматогенезе на стадии созревания в результате мейоза образуется четыре одинаковые клетки - предшественники сперматозоидов, которые на стадии формирования приобретают характерный вид зрелого сперматозоида и становятся подвижными. Каждый месяц в одном из яичников у женщины продолжает развитие одна из остановившихся в своем делении клеток. В результате первого деления мейоза образуется крупная клетка - предшественник яйцеклетки и маленькое, так называемое полярное, тельце, которые вступают во второе деление мейоза. На стадии метафазы II предшественница яйцеклетки овулирует, т. е. выходит из яичника в брюшную полость, откуда попадает в яйцевод. Если слияния со сперматозоидом не происходит, не закончившая деление клетка погибает и выводится из организма. Полярные тельца служат для удаления избытка генетического материала и перераспределения питательных веществ в пользу яйцеклетки. Спустя некоторое время после деления они погибают.

6. В чём заключается биологический смысл и значение мейоза?

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

А так же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом

Подумайте! Вспомните!

1. Организм развился из неоплодотворённой яйцеклетки. Являются ли его наследственные признаки точной копией признаков материнского организма?

Да. Такой тип размножения называется партеногенез. Партеногенез (Parthenogenesis - от греч. parthenos - девушка, девственница + genesis-зарождение) - форма полового размножения, при котором развитие организма происходит из женской половой клетки (яйцеклетки) без оплодотворения ее мужской (сперматозоид).

Это половое, но однополое размножение, возникшее в процессе эволюции организмов у раздельнополых форм. В тех случаях, когда партеногенетические виды представлены только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорение темпа размножения вида, так как все особи подобных видов способны оставить потомство. В случае если из оплодотворенных яйцеклеток развивается самка, а из неоплодотворенных самец, партеногенез способствует регуляции численности и соотношения полов (например, у пчел партеногенетически развиваются самцы - трутни, а из оплодотворенных - самки - матки и рабочие пчелы).

Партеногенетически может развиваться либо яйцеклетка, прошедшая мейоз и содержащая гаплоидный набор хромосом(n) (генеративный, гаплоидный, или мейотический партеногенетический), либо яйцеклетка одной из премейотических стадий оогенеза с сохранением свойственного данному виду хромосомного набора - диплоидного (2n) или полиплоидного (3n, 4n, 5n редко 6n , 8n) (амейотический партеногенез). При некоторых формах партеногенеза слияние гаплоидного ядра яйцеклетки с гаплоидным ядром направительного (полярного) тельца приводит к восстановлению диплоидности (аутомиктический партеногенез). От этих особенностей партеногенеза зависит генотип, пол партогенетического потомства, а так же сохранение или утрата гетерозиготности, приобретение гомозиготности и др.

2. Объясните, почему для обозначения мужских половых клеток существует два термина: спермии (например, у покрытосеменных растений) и сперматозоиды.

Сперматозоиды – это мужские половые клетки, обладающие способностью к активному движению за счет жгутика. Спермий – это мужская половая клетка растений (голосеменные, покрытосеменные), лишенная жгутиков; передвигается пассивно - в результате роста пыльцевой трубки.

Размножение – важнейшее свойство всего живого. Вид, размножающийся только бесполым путем, может процветать достаточно длительное время, если он обитает в относительно постоянных условиях. При возникновении в среде его обитания изменений, которые вызывают гибель отдельных особей, весьма вероятно, что погибнут все особи, потому что они очень сходны генетически.

При половом материнским и отцовским организмами вырабатываются специализированные половые клетки – . Женские неподвижные гаметы называются яйцеклетками, мужские неподвижные – спермиями, а подвижные – сперматозоидами. Эти половые клетки сливаются с образованием зиготы, т.е. происходит оплодотворение. Половые клетки, как правило, имеют половинный набор хромосом (), так что при их слиянии восстанавливается двойной (диплоидный) набор, из зиготы развивается новая особь. При половом размножении потомство образуется при слиянии гаплоидных ядер. Гаплоидные ядра образуются в результате мейотического деления.

Мейоз ведет к уменьшению генетического материала вдвое, благодаря чему количество генетического материала у особей данного вида в ряду поколений остается постоянным. Во время мейоза происходит несколько важных процессов: случайное расхождение хромосом (независимое расчленение), обмен материалом между гомологичными хромосомами (кроссинговер). В результате этих процессов возникают новые комбинации генов. Поскольку ядро зиготы после оплодотворения содержит генетический материал двух родительских особей, это повышает генетическое разнообразие внутри вида. Если суть и биологическое значение полового процесса едины для всех организмов, то его формы очень разнообразны и зависят от уровня развития, среды обитания, образа жизни и некоторых других особенностей.

Половое размножение есть у всех групп растений. Мхи растут дернинами. Мужские и женские растения оказываются рядом. Дождевая вода помогает сперматозоидам попасть на верхушки женских растений, где они сливаются с яйцеклетками, образуется зигота, из которой развивается сидящая на длинной ножке коробочка со спорами. У половые клетки развиваются на заростке, образовавшемся в результате прорастания споры. На нижней стороне заростка женские органы – архегонии, мужские – антеридии. Во влажной среде половые клетки сливаются, зигота дает начало зародышу, из которого вырастает молодой . У цветковых растений самое сложное половое размножение – двойное оплодотворение. Пыльца (мужские половые клетки) попадает на рыльце пестика (женский половой орган) и прорастает. По пыльцевой трубке спермии движутся к . Спермии проникают в зародышевый мешок. Один сливается с яйцеклеткой и дает начало зародышу, второй спермий сливается с центральной клеткой и дает начало эндосперму – запасу питательных веществ.

Половое размножение имеет очень большие преимущества по сравнению с бесполым. Сущность полового размножения заключается в объединении в наследственном материале потомка генетической информации из двух разных источников – родителей. Оплодотворение у животных может быть наружным или внутренним. При слиянии образуется зигота с двойным набором хромосом.

В ядре зиготы все хромосомы становятся парными: в каждой паре одна из хромосом отцовская, другая – материнская. Дочерний организм, который разовьется из такой зиготы, в одинаковой мере снабжен наследственной информацией обоих родителей.

Биологический смысл полового размножения состоит в том, что возникающие организмы могут сочетать полезные признаки отца и матери. Такие организмы более жизнеспособны. Половое размножение играет важную роль в эволюции организмов.

Половое размножение встречается у представителей всех типов растительного и животного мира. Оно связано с образованием особых половых клеток: женских - яйцеклеток и мужских - сперматозоидов.

Для половых клеток (гамет) характерно одинарное (гаплоидное) число хромосом (см. ). Кроме того, они отличаются соотношением объемов цитоплазмы и ядра (по сравнению с соматическими клетками).

Строение мужской половой клетки (сперматозоид)

Мужские половые клетки - сперматозоиды - обычно очень мелкие и подвижные. Типичные сперматозоиды состоят из головки, шейки и хвоста.

Головка почти целиком состоит из ядра, покрытого тонким слоем цитоплазмы. Самый передний ее участок заострен, покрыт колпачком.

Шейка сужена, в ней находятся центриоль (составная часть клеточного центра) и митохондрии.

Хвост сперматозоидов состоит из тончайших волокон, покрытых цитоплазматическим цилиндром: он является органоидом движения.

Общая длина сперматозоида, включая головку, шейку и хвост, у млекопитающих и человека составляет 50-60мкм. Характерно, что сперматозоиды образуются обычно в огромных количествах (у млекопитающих их в течение жизни созревает сотни миллионов).

Строение женской половой клетки (яйцеклетка)


Женские половые клетки (яйцеклетки) неподвижны и, как правило, крупнее сперматозоидов. Обычно они имеют шаровидную форму и разнообразное строение оболочек. У млекопитающих размеры яйцеклеток сравнительно небольшие и составляют 100-200мкм в диаметре. У других позвоночных (рыб, амфибий, рептилий, птиц) яйцеклетки крупные. В цитоплазме они содержат огромное количество питательных веществ.

У птиц, например, яйцеклеткой является та часть яйца, которая обычно называется желтком. Диаметр яйцеклетки курицы составляет 3-3,5см, а у таких крупных птиц, как страусы, - 10-11см. Эти яйцеклетки покрыты несколькими оболочками сложного строения (слой белка, подскорлуповая и скорлуповая оболочки и др.), которые обеспечивают нормальное развитие зародыша.

Количество образующихся яйцеклеток обычно значительно меньше, чем количество сперматозоидов. Например, у женщины в течение жизни созреет около 400 яйцеклеток.

Строение мужских и женских половых клеток растений описано .

Развитие яйцеклеток и сперматозоидов

Созревание и развитие половых клеток называется гаметогенезом. У животных и человека он происходит в половых железах: яйцеклетки развиваются в яичниках, а сперматозоиды - в яичках.

Стадии развития

Процессы развития мужских половых клеток (сперматогенез) и женских половых клеток (овогенез) имеют ряд сходных черт. И в яичнике, и в яичках различают три разных стадии:

  • Стадии размножения;
  • стадии роста;
  • стадии созревания половых клеток.

На первой стадии сперматогонии и овогонии (клетки - предшественники сперматозоидов и яйцеклеток) размножаются путем и число их увеличивается.

У мужчин митотическое деление сперматогоний начинается в период полового созревания и продолжается десятки лет. У женщин деление овогоний происходит только в эмбриональный период их жизни и заканчивается еще до рождения. У животных деление этих клеток зависит от сроков и периодов размножения.

Во второй стадии сперматогонии и овогонии перестают размножаться, начинают расти и увеличиваться в размерах, превращаясь в первичные сперматоциты и овоциты. Особенно значительно возрастают размеры у овоцитов. Например, у лягушек линейные размеры овоцита больше в 2 тыс. раз, чем у овогонии. Это связано с тем, что в них накапливаются питательные вещества, необходимые для развития зародыша.

Наиболее важные изменения происходят с будущими половыми клетками на третьей стадии созревания. Здесь проявляются и существенные отличия между спермато- и овогенезом. В этой зоне первичные овоциты дважды делятся путем мейоза. При первом мейотическом делении образуется крупный вторичный овоцит и мелкая клетка- первичный полоцит (первое полярное, или направительное, тельце).

При втором мейотическом делении вторичный овоцит делится на крупную незрелую яйцеклетку и мелкий вторичный полоцит (второе полярное тельце). Первичный полоцит тоже может разделиться еще на два полоцита.

Таким образом, в результате двух мейотических делений из одного первичного овоцита получается 4 клетки с гаплоидным набором хромосом - незрелая половая клетка (которая превращается в зрелую яйцеклетку) и три полоцита, которые в дальнейшем погибают.

При сперматогенезе первичный сперматоцит в зоне созревания тоже дважды делится путем мейоза. Но при этом возникают 4 одинаковых гаплоидных сперматиды. В дальнейшем они путем сложных преобразований (изменения формы, развития хвоста) превращаются в зрелые сперматозоиды.

Оплодотворение

Оплодотворение - это процесс слияния ядер сперматозоида и яйцеклетки и восстановление диплоидного набора хромосом. Оплодотворенная яйцеклетка носит название зиготы. Образование зиготы происходит только при проникновении сперматозоида в яйцеклетку.


Этот процесс у разных организмов осуществляется неодинаково. У млекопитающих проникновение сперматозоида в яйцеклетку сопровождается растворением ее оболочки при помощи различных ферментов, выделяемых сперматозоидом. У многих насекомых яйцеклетки имеют плотную оболочку, и сперматозоид проникает через небольшие отверстия. У некоторых водных организмов на поверхности яйцеклетки образуется в месте контакта со сперматозоидом небольшой воспринимающий бугорок, который затем втягивается внутрь вместе со сперматозоидом.

Обычно в цитоплазму яйцеклетки проникает только головка сперматозоида с митохондрией и центриолью, а хвост остается снаружи. Оболочка головки растворяется, ядро начинает набухать, пока не достигнет размеров ядра яйцеклетки. Затем оба ядра сближаются и, наконец, сливаются.

Иногда в яйцеклетку одновременно проникает несколько сперматозоидов, но слияние с ядром происходит только у одного из них. В зиготе все хромосомы становятся парными: в каждой паре гомологичных хромосом одна хромосома принадлежит яйцеклетке, вторая - сперматозоиду. Это явление имеет большое значение для эволюции. Организм, развивающийся из зиготы, обладает большим диапазоном комбинативной изменчивости, следовательно и более широкими возможностями приспособления к меняющимся условиям внешней среды.

Характерно для цветковых растений.

Одна молодая, но принципиальная учительница биологии однажды поставила двойку ученику, который спутал гаметы с гонадами. На первый взгляд, всё совершенно справедливо: гаметы — это половые клетки, а гонады – это половые органы. Но ведь ученик смотрел прямо в корень: функция гонад, или половых органов — это создание половых клеток с целью оплодотворения и продолжения рода. Так что, наверное, можно было бы двойку и не ставить.

Действительно, а можно ли вообще обойтись без гамет, и размножаться без половых клеток? О размножении наедине, или зачем нужны гаметы, рассмотрим ниже.

В природе возможно размножение наедине, иногда так и происходит, но только у некоторых видов и при некоторых обстоятельствах. Это явление называется партеногенезом. С помощью партеногенеза могут размножаться тли, некоторые ящерицы. Гораздо более известно почкование у гидры, при котором одно многоклеточное животное превращается в два разных существа.

Важно отметить, что гидра — это примитивное существо, поэтому этот вид размножения для нее можно признать естественным. И то, при возможности гидра старается использовать половое размножение. Что касается ящериц, то в условиях партеногенеза способна к размножению только женская особь.

Из неоплодотворенной яйцеклетки, которая начинает дробиться (от «безысходности»), получается дочь, генетически идентичная своей матери. Поэтому без натяжек партеногенез можно назвать клонированием.

Конечно, так размножаться могут только женские особи, потому что они могут вынашивать потомство. Мужские особи с удовольствием бы проделывали то же самое, но самцы к вынашиванию, и тем более, к рождению потомства не способны.

Также существует копирование генома родительской особи и у растений. Всем известно размножение смородины отводками, а садовой земляники — усами. Но со временем генетический материал истощается, урожай становится меньше, а ящерицы, долгое время не сумевшие найти себе хоть какого–нибудь кавалера, проигрывают битву под солнцем.

Поэтому гаметы (яйцеклетки и сперматозоиды) нужны для того, чтобы обеспечить будущему потомству здоровый и полноценный генетический материал, взятый поровну от отца и от матери. Именно половое размножение позволило возникнуть большому разнообразию признаков, сделало возможным появление эволюции, и снабдило нас самыми разными видами полезных человеку растений и животных.

Образование половых клеток и оплодотворение — это совершенные механизмы поддержания и развития жизни на нашей планете. Но обратимся теперь к половым клеткам человека. В чём их уникальность, и чем они отличаются от обычных клеток, коих в нас многие миллиарды?

Отличия

Человек, изучивший биологию, может дать несколько ответов на вопрос, чем половые клетки человека отличаются от соматических (то есть, от обычных клеток). И в каждом случае он будет прав. Так, сперматозоиды — это подвижные клетки со жгутиками, которых больше в организме нигде нет, а яйцеклетки определяют менструальный цикл, что тоже больше не делает ни одна клетка в организме. Всё это правильно.

Но главным отличием гамет от других высокодифференцированных клеток, из которых построен наш организм, является половинное и «перетасованное» содержание наследственного материала. Что это значит?

Известно, что кариотип человека содержит 46 хромосом. Из них 22 хромосомы парные, то есть всего у человека 44 хромосомы, которые кодируют самые разные белки организма. Их называют аутосомами.

Ещё в кариотипе существует 2 непарные хромосомы, которые называются половыми. У женщин эти хромосомы одинаковые — XX, а у мужчины разные — ХУ. Поэтому каждая клетка организма, за исключением гамет, содержит 46 хромосом (аутосомы + половые хромосомы). Этот набор называется двойным, или диплоидным, поскольку можно организовать 22 пары аутосом в каждой клетке.

Поскольку мужская и женская гамета соединяются вместе, то в итоге должно получиться число хромосом — 46. Поэтому половые клетки содержат половинный, или гаплоидный набор. Сколько аутосом в половых клетках человека? Конечно, 23. Парный набор образуется во время оплодотворения.

Кроме гаплоидного набора, гаметы отличаются от соматических клеток ещё и особым типом полового размножения клеток, который называется мейозом. Если соматические клетки просто делятся пополам, предварительно удвоив свой генетический материал, то при мейозе генетический материал, напротив, уменьшается вдвое. Конечно, половые клетки человека формируются в особых условиях, и этот процесс намного сложнее, чем деление соматических клеток.

Мейоз характерен для половых клеток не только тем, что позволяет подготовить отдельное «ключик» — сперматозоид и «замочек» — яйцеклетку, но также во время мейоза существуют две очень важные процедуры, которые позволяют избежать накопления мутаций, и освежить генетический материал.

Это так называемое независимое распределение, когда во время мейоза хромосомы расходятся совершенно случайно по разным полюсам клетки, и кроссинговер.

Кроссинговер — это процесс обмена наследственным материалом между хромосомами внутри одной диплоидной пары, которые пока еще не разделились на гаплоидные наборы. После кроссинговера возникают новые комбинации наследственного материала, который случайно так, как тасуется колода карт перед сдачей, попадает в одну гамету. В половых клетках человека эти процессы обязательны.

В результате существенно повышается разнообразие, и следовательно, наследование признаков. После слияния гаплоидных гамет образуется нормальная, диплоидная зигота — или оплодотворенная яйцеклетка. В зиготе уже существует два набора хромосом родителей, и на свет появляется новая особь с уникальным генетическим кодом. Вот чем половые клетки человека отличаются от других его клеток в главном.

Но даже и у полового размножения, с его совершенной перетасовкой и подменой генетического материала, со временем, если его не обновлять, возникают определенные проблемы. О том, что генетический материал постепенно истощается, накапливаются мутации и возникают болезненные особи, человечество узнало давно.

В некоторых не очень развитых изолированных культурах северных народов, где много близкородственного скрещивания, часто почетный гость, проезжающий через племя, должен был разделить ложе с женой хозяина чума. Это был единственный способ подбросить здоровый генетический материал в угасающий от мутаций племенной генофонд.

Строение

Первичные знания о строении половых клеток были получены в давние времена, при попытке создания различных сортов сельскохозяйственных культур, поскольку изучать растительные источники наследственного материала гораздо легче, и можно не обращать внимания на многочисленные запреты, в том числе и религиозного характера.

Мы уже узнали, что половые клетки человека содержат половинное количество хромосом, готовых соединиться вместе. Чтобы произошло оплодотворение, сперматозоид должен суметь донести генетическую информацию до яйцеклетки, а яйцеклетка должна принять в «свое лоно» самого здорового и активного сперматозоида.

Строение половых клеток человека как нельзя лучше показывает, насколько они приспособлены к этой функции. Рассмотрим очень коротко, как устроены сперматозоид и яйцеклетка человека.

Сперматозоид

Сперматозоид является очень мелкой и очень подвижной гаметой. В семенниках ежедневно образуются многие миллионы сперматозоидов, и созревают они каждые 2 месяца. С момента полового созревания и до старости они вырабатываются непрерывно, и в каждый момент времени мужчина располагает большим числом зрелых сперматозоидов. В отличие от женщины, мужчина всегда готов к оплодотворению.

Мужской сперматозоид состоит из головки, шейки, промежуточного отдела и жгутика.

Головка сперматозоида содержит самое главное — гаплоидное число хромосом, сверху головка прикрыта особой шапочкой — акросомой, как лобовой броней. Акросома содержит специальные ферменты, которые перед оплодотворением помогают сперматозоиду растворить поверхность яйцеклетки. Таким образом, акросома — это «химическое оружие».

Коротенькая шейка сперматозоида содержит осевые структуры, или центриоли. Центриоли состоят из микротрубочек, которые формируют жгутик или жесткий каркас все клетки.

Что касается промежуточного отдела, то в нем находится огромное число митохондрий, или энергетических аккумуляторов — батареек. Сперматозоид должен постоянно бить своим хвостом, и митохондрии должны доставлять большое количество энергии для движения сперматозоидов к яйцеклетке. Главное, что он должен сделать без утомления — то пройти от влагалища до места оплодотворения (иногда очень далеко, в яичник).

Затем сперматозоиды скапливаются около яйцеклетки, некоторое время совершают свои движения, при этом ориентируются в определённом месте на ее поверхности. После этого начинается проникновение сперматозоидов сквозь множество мембрана яйцеклетки, и на этом этапе «открывания незнакомых дверей» побеждает сильнейший.

Яйцеклетка

Отличие овогенеза от сперматогенеза заключается в том, что сперматозоиды мужчина начинает продуцировать только после полового созревания, а у девочек все яйцеклетки возникают еще во внутриутробном периоде. Говоря простым языком, каждая женщина рождается с совершенно ограниченным набором яйцеклеток, и ни одной новой яйцеклетки после рождения у женщины не возникает.

В отличие от мужчин яйцеклетки (гаметы) у женщин выделяются не постоянно, а циклически, и этот процесс называется овариально-менструальным циклом. Через каждые 28 дней, если не состоялось оплодотворение, то подготовленный эпителий матки за ненадобностью отторгается в виде месячных, и всё начинается сначала.

Если проследить развитие яйцеклетки по дням, то оказывается, что самые первичный фолликул, в котором находится незрелый ооцит, постепенно созревает, увеличивается в размерах, и в конце концов, превращается в зрелый фолликул, или граафов пузырек. Его видно невооружённым глазом, поскольку он возвышается над поверхностью яичника и в поперечнике составляет около одного сантиметра.

После этого созревший фолликул лопается, и яйцеклетка выходит наружу. Так происходит овуляция. Во время овуляции яйцеклетка представляет собой так называемый ооцит второго порядка. Именно этот ооцит второго порядка и содержит гаплоидный набор хромосом.

В процессе созревания ооцитов в яичнике у женщины происходит первое деление мейоза, а второе деление мейоза (с окончательной перетасовкой генетического материала) происходит после оплодотворения. Гаметы у человека образуются в результате мейоза, в отличие от простого деления соматических клеток, которое называется митозом.

Конечно, знания о том, что происходит со сперматозоидом и яйцеклеткой при созревании, могли быть получены только в обществе, где господствует научное мировоззрение, есть предпосылки к совершению открытий, существует материально-техническая база.

В настоящее время эти знания успешно применяются на практике. Стало возможным проведение экстракорпорального оплодотворения, и скоро наступит время, когда не будет никаких наследственных заболеваний, а наука научиться обновлять генетический материал, и это спасет мир от онкологических болезней. Надеемся, что нашим потомкам удастся дожить до этого действительно светлого будущего.

Одним из первых этапов разделения труда между клетками в организме, практически совпавшим с возникновением самих многоклеточных организмов , было разделение на соматические и половые клетки. С тех пор, эволюционируя, многоклеточные организмы поделились на две группы: на тех, кто создает половые клетки из соматических по мере необходимости, и тех, кто уже на ранних этапах эмбрионального развития выделяет и на некоторое время «консервирует» отдельную популяцию клеток – предшественников половых клеток.


© jessy731/Flickr

У человека, например, первичные половые клетки образуются на пятой неделе эмбрионального развития в желточном мешке. В это время зачатки гонад – яичников и семенников — еще даже не сформировались, но, когда они сформируются, первичные половые клетки мигрируют туда и там и останутся. Похожим образом первичные половые клетки выделяются почти у всех животных сложнее кишечнополостных. У некоторых видов насекомых судьба половых клеток определяется экстремально рано: уже в неоплодотворенной яйцеклетке у одного из полюсов находятся белковые гранулы, и именно из части цитоплазмы с гранулами после дробления образуются первичные половые клетки.

У всех растений и примитивных животных, раньше других ответвившихся от общего эволюционного ствола, (губок, гребневиков, медуз, оболочников, плоских червей и т.п.) никаких изначально назначенных половых клеток нет. Они образуются из соматических стволовых клеток, живущих в соматических тканях только тогда, когда организм решает приступить к размножению.

До сих пор не было выдвинуто ни одной теории, которая бы успешно объяснила, зачем понадобилось раннее «консервирование» половых клеток.

Одно из предлагаемых объяснений заключается в заботе о сохранности генетического материала. Действительно, при каждом делении клетки происходит удвоение хромосом, и при копировании происходят ошибки. Количество таких ошибок при одном копировании невелико, но, чем больше копий, тем больше ошибок. В метаболически активных клетках из-за окислительно-восстановительных реакций, необходимых для выработки энергии (синтеза АТФ), более агрессивная окружающая среда, выше концентрация свободных радикалов. Под их воздействием в ДНК могут появляться новые мутации, даже если в данный момент не происходит копирование.

Предел Хейфлика и теломеры

Неточности при репликации и активный метаболизм способствуют накоплению мутаций в геноме клетки. Накопление мутаций может приводить к злокачественному перерождению клетки, и тогда погибнет уже не одна клетка, а весь организм. Для защиты от такого эгоистического поведения существует ограничение, наложенное на соматические клетки многоклеточных организмов – предел Хейфлика – максимальное число делений, которые может осуществить клетка. Для клеток человека предел Хейфлика равен 52. Технически предел Хейфлика возникает за счет теломер – последовательностей на концах хромосом. При удвоении хромосом полимераза из-за своей пространственной структуры не может начать действовать с самого конца хромосомы, и транскрипт каждый раз выходит все короче и короче. Пока укорочение затрагивает только последовательности теломер, клетка живет. Как только теломеры кончаются, геном становится нестабилен и клетка погибает. Побочным эффектом таких репликативных ограничений, по-видимому, является старение организма. На клетки половой линии предел Хейфлика не распространяется – потенциально они бессмертны и переходят из поколения в поколение, перетасовывая генетический материал. Такое своеобразное бессмертие достигается за счет активности теломеразы – фермента, удлиняющего теломеры. Правда, при этом сразу повышается цена возникшей негативной мутации. Если клетка с мутацией примет участие в процессе оплодотворения, то мутацию унаследуют все клетки нового организма. Такой организм может оказаться менее приспособленным или даже больным и быстро погибнуть.

Однако, против консервации половой линии ради бережного отношения к ядерной ДНК есть серьезный аргумент. Он заключается в том, что с той точки зрения консервируются только женские половые клетки. Мужские половые клетки очень активно делятся и у человека проходят около 30 делений к моменту полового созревания и около 400 (!) – к 30 годам. С этой точки зрения мужские половые клетки-предшественники ведут себя как соматическая ткань – особенно велико сходство с костным мозгом, в котором небольшое количество стволовых клеток все время интенсивно делится, чтобы обеспечивать организм короткоживущими форменными элементами крови. Из-за такого интенсивного деления предшественников сперматозоидов ДНК потомства содержит уже достаточно большое количество мутаций по сравнению с отцовской.



© Darryl Leja/National Human Genome Research Institute

Предположить другую, более вероятную причину появления консервации клеток половой линии помогает сравнение роли сперматозоида и яйцеклетки при оплодотворении. В момент оплодотворения из сперматозоида в яйцеклетку попадает только ядро, цитоплазма и все органеллы достаются будущему эмбриону от яйцеклетки. В частности, все митохондрии нового организма унаследованы им от матери. Митохондрии занимаются в клетке выработкой энергии. Будучи исторически бактериями, вступившими в симбиоз с эукариотами, они сохраняют остатки собственного генома. Митохондриальный геном больше похож на бактериальный, чем на эукариотический. Он представлен одной кольцевой хромосомой, и не вступает в гомологическую рекомбинацию. Митохондрии делятся как обычные бактерии, при этом двум дочерним митохондриям достаются идентичные с точностью до только что появившихся мутаций хромосомы. Это значит, что неудачная мутация, возникшая в митохондриальной ДНК, может быть элиминирована, только если ни одна неудачная митохондрия не попадет в клетки половой линии следующего поколения (маловероятно, если неудачная митохондрия успела неудачно размножиться) или если организм не оставит потомства вовсе. По всему выходит, что цена такой мутации выше.

Однако, кроме вредных мутаций, есть еще и полезные. Без них эволюция была бы вообще невозможна, потому что во-первых, все были бы одинаковы, а, во-вторых, вообще бы не пережили резкой смены условий. Поэтому число мутаций должно находиться на определенном отрезке: не быть ни слишком большим, ни слишком маленьким.

Предположения о том, что изоляция клеток половой линии нужна для бережного хранения митохондрий яйцеклеток, была выдвинута уже довольно давно. Но, разумеется, провести эксперимент в масштабах эволюции от общего предка всех эукариот до хотя бы кольчатых червей совершенно невозможно. Поэтому Ник Лэйн из Университетского колледжа в Лондоне и его коллеги воспользовались математической моделью для того, чтобы подтвердить или опровергнуть эту гипотезу. Их работа опубликована в электронном научном журнале PLOS Biology.

В разное время в разных экспериментах была оценена скорость возникновения новых мутаций в митохондриальной ДНК разных видов. Оказалось, что она довольно низкая для растений и примитивных животных, но гораздо более высокая у более сложных животных, в том числе, у млекопитающих. Причины этого не вполне понятны. Было выдвинуто предположение, что переход к подвижному образу жизни и охоте выдвинул более жесткие требования к энергообеспечению клеток, и для получения более эффективных митохондрий частоту возникновения мутаций пришлось повысить.

Хорошо, однако, заметна корреляция между частотой возникновения мутаций в митохондриальной ДНК и консервацией женских половых клеток. Авторы работы построили математическую модель, оценивающую приспособленность организма в зависимости от частоты возникновения мутаций в митохондриальной ДНК. Оказалось, что при высокой частоте, свойственной, например, человеку, без консервации женских половых клеток мутации в митохондриях накапливались бы слишком быстро.

В целом, эта математическая модель довольно убедительно отвечает на вопрос, зачем вообще понадобилось консервировать клетки половой линии. Но, будучи математической моделью, она обладает тем недостатком, что опирается только на уже полученные к текущему моменту экспериментальные данные о частоте мутаций при репликации митохондриальной ДНК у разных видов. Если завтра в новых экспериментах найдут растение с высокой частотой мутаций или какое-нибудь позвоночное с низкой, теорию придется пересмотреть или существенно дополнить.

Авторы работы предполагают также, что их теория объясняет необъясненное пока явление атрезии фолликулов. В ходе эмбрионального развития женского организма человека (аналогично это устроено и у многих других животных) образуется около 6 миллионов оогоний (предшественников ооцитов). Потом более 90% их самопроизвольно погибает, и к пубертату их остается около 500 тысяч. Сложно себе представить, что это происходит из-за низкого качества клеток. Авторы работы предположили, что это явление появилось, чтобы исправить слишком маленькую вариативность в митохондриальной ДНК, которая возникла из-за консервации клеток половой линии. По их предположению, клетки сначала несколько раз делятся, чтобы получить больше разных вариантов митохондриальной ДНК, а потом часть из них гибнет так, чтобы в живых остались клетки с максимально непохожими вариантами.

Такая вариативность очень важна, именно она является материалом для эволюции и отбора наиболее выгодных вариантов. Соревнование между разными вариантами ооцитов начинается очень рано. В каждом цикле у человека начинает созревать несколько фолликулов, но один из них вырывается вперед, и тогда остальные, как правило, гибнут (именно этим объясняется сравнительно низкая частота рождения разнояйцевых близнецов у человека). Возможно, что решающем преимуществом в этом соревновании как раз и является эффективность работы митохондрий.

Авторы работы вполне согласны с тем, что их предположение – всего лишь гипотеза, что она не может быть подтверждена экспериментальными данными, зато может быть такими данными опровергнута. Однако она довольно непротиворечиво объясняет явление, которое ученые пытались объяснить с самого начала – консервацию клеток половой линии (преимущественно, в женском организме). Кроме того, попутно эта гипотеза объясняет и другие не объясненные ранее явления – например, избыточной производство и массовую гибель предшественников яйцеклеток.